RS – OpenPseudonymiser Key Server
RS – OpenPseudonymiser Key Server

OpenPseudonymiser
Key Server Specification

Version No: 2.0.2b
Revision History

	Revision date
	Version
	Summary of Changes

	03/12/2013
	1.0
	First draft

	09/12/2013
	1.1
	Revisions post discussion with JHC/JC & DH

	06/01/2014
	1.2
	Moved Batch processor spec into separate document, focussed this spec on only Key Server requirements

	01/04/2014
	1.4
	Changes to support website integration

	17/09/2014
	2.0.2
	Released on website

	18/09/2015
	2.0.2a
	Added information about the 128 random character generation of salt to section 4.2

	20/02/2016
	2.0.2.b
	Added Licence

OpenPseudonymiser documentation by the Julia Hippisley-Cox, University of Nottingham is licensed under a Creative Commons Attribution-NoDerivs 2.0 UK: England & Wales License. www.openpseudonymiser.org

The OpenPseudonymiser software is issued under the GNU General Public License. University has made reasonable enquiries regarding granted and pending patent applications in the general area of this technology and is not aware of any granted or pending patent in Europe which restricts the use of this software. In the event that University receives a notice of perceived patent infringement, then University will inform users that their use of the software may need to or, if appropriate, must cease in the appropriate territory. University does not make any warranties in this respect and each user shall be solely responsible for ensuring that they do not infringe any third party patent.

Contents

31 Terms Used

32 Purpose of this document

43 Requirements

43.1 General

43.2 Logging

5Methods

53.2.1 User management methods:

53.2.1.1 Creating a user

63.2.1.2 Testing authentication

73.2.1.3 Changing a password

83.2.1.4 Resetting a (forgotten) password

93.2.1.5 Searching for users

103.2.2 General methods:

103.2.2.1 Initialising the system

113.2.2.2 Requesting the sever public key

123.2.2.3 Requesting a test salt file

133.2.3 Super user methods:

133.2.3.1 Deleting a user

143.2.3.2 Requesting log entries

153.2.3.3 Transferring salt ownership

163.2.4 Salt File management methods:

163.2.4.1 Authentication of these methods

163.2.4.2 Creating an encrypted salt

173.2.4.3 Getting an encrypted salt

183.2.4.4 Deleting an encrypted salt

193.2.4.5 Sharing salt

203.2.4.6 Un-sharing salt

213.2.4.7 Listing owned salts

223.2.4.8 Listing shared salts

234 Appendix A – Data transfer to and from the methods

234.1 UserCreationDTO

234.1.1 Class

244.2 Response Type: “SaltCreationDTO”

244.2.1 Class:

244.2.2 JSON Example:

254.3 Response Type: Salt Sharing Dto

254.3.1 Class:

254.4 Response Type: “Log entries”

254.4.1 Class:

254.5 Response Type: “List of users”

254.5.1 Class:

264.6 Response Type: “Public Key”

264.7 Response Type: “Encrypted Salt File”

264.7.1 Class:

264.7.2 JSON Example:

264.7.3 Notes:

1 Terms Used

Batch Processor

This is an implementation of OpenPseudonymisation built by the University of Nottingham. It is a stand-alone windows application used to process CSV files, currently available on the OpenP site.
The Batch Processor was modified to be able to connect to OpenP Key Servers in April 2014
OpenPseudonymiser Web Site or “OpenP site”
The existing web site http://www.openpseudonymiser.org with information about the project and downloadable code and resources
OpenP Key Server
A piece of software which provides key creation and management for OpenPseudonymisation implementations
ApiRoot

The root path for the API (e.g. http://openp.api.qresearch.org)
2 Purpose of this document
Specify the functionality required to build an OpenP Key Server.
3 Licence

OpenPseudonymiser is free software: you can redistribute it and/or modify it under the terms of the GNUGeneral Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

OpenPseudonymiser, including the website, software, documentation and key server technology, is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Organisations who wish to make use of the OpenPseudonymiser technology have full responsibility for regarding information governance and security considerations relevant to their purposes. The Key Server is intended for demonstration purposes only. Organisations wishing to use OpenPseudonymiser for production purposes should deploy an instance of the software/key server etc suitable for their own purposes in order to satisfy their own information governance and security requirements.
You should have received a copy of the GNU General Public License along with OpenPseudonymiser. If not, see http://www.gnu.org/licenses/
OpenPseudonymiser makes use of the following Open Source libraries:

RSAEncryption Class Version 1.00 which is Copyright (c) 2009 DudiBedner

BigInteger Class Version 1.03 which is Copyright (c) 2002 Chew Keong TAN

NHSNumber-Validation which can be found at https://github.com/pfwd/NHSNumber-Validation
4 Requirements
4.1 General

An OpenP Key server must:

· Provide it’s services as REST methods over HTTPS
· Implement all of the methods described in the next section

· Return data as either JSON or XML (depending on the headers in the request)
4.2 Logging

Every call to every method must be logged along with the user (if authenticated) and time of the call. The level of detail logged is left to the Key Server implementer.

 Methods (End points)
4.2.1 User management methods:
4.2.1.1 Creating a user

Call:

· ApiRoot/User (POST)
Authentication:

· Not required
Action:

· Creates a user on the Key Server.
· Usernames must be unique.
· Email must be unique.

Data required:

· Serialised object of type UserCreationDTO (see appendix)

On Success:

· Http Status returned: 201 Created

· Http Response header set: Location: “http://openp.api.dev/api/User/{newId}

On Failure:
· Http Status returned: 409 Conflict

· Http Response Phrase set to the reason why failure occurred

4.2.1.2 Testing authentication / getting a UserId
Call:

· ApiRoot/AuthenticateUser (GET)
Authentication:

· Required
Action:
· None

Data required:

· None
On Success (i.e. if authentication headers match a user in the system):
· Http Status returned: 200 OK

· The user’s ID is returned in the response content

On Failure:

· Http Status returned: 401 Unauthorized
4.2.1.3 Changing a password

Call:

· ApiRoot/ChangePassword (POST)
Authentication:

· Required

Action:
· Changes the password for the authenticated user
Data required:

· NewPassword

On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status returned: 401 Unauthorized
· Http Response Phrase set to the reason why failure occurred

4.2.1.4 Resetting a (forgotten) password

Call:

· ApiRoot/ResetPassword (POST)
Authentication:

· Required

Action:
· Generates a new password and emails it to the account owner
Data required:

· (string 255) : containing either Email or Username. If a ‘@’ is detected the server will try and match on email, otherwise it will try and match Username
On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status returned: 404 Not Found
· Http Response Phrase set to the reason why failure occurred

4.2.1.5 Searching for users

Call:

· ApiRoot/SearchUser (GET)
Authentication:

· Required

Action:
· Returns a list of users who match the provided search string
Data required:

· (string 255) : containing either a partial or full Email or Username. If a ‘@’ is detected the server will try and match on email, otherwise it will try and match Username
On Success:

· Http Status returned: 200 OK

· List of users (UserDTO) see appendix

On Failure:

· Http Status returned: 404 Not Found
4.2.2 General methods:

4.2.2.1 Initialising the system

Call:

· ApiRoot/Initialise (POST)
Authentication:

· Not Required
Action & Notes:

· Initialises the Key Server with a super user password

· No methods of the Key Server will work until this method has been called.

· Once initialised this method has no effect

Data required:

· SuperUserPassword (string 20)
On Success:

· Http Status returned: 200 OK
On Failure:

· Http Status returned: 403 Unauthorized (returned if the system has already been initialised)
4.2.2.2 Requesting the sever public key

Call:

· ApiRoot/PublicKey (GET)
Authentication:

· Not Required
Action & Notes:
· Returns the public key for the server
Data required:

· None

Data returned:

· A string containing the RSA Public Key for the server.
E.g.
"<RSAKeyValue><Modulus>kcVhdr4DaGLAE2BUEPQSYTJ8JRw9NGsms45r2CEYKcElP4BUGEQnN9R4A8CMM1YZCqu5VbXvPoLZ9i/G8AL6g5YuD7MRTI60Xf930yHjCRNX2NiYX/FrKZrA6+T/GHoh9LjuZXBX75kwj53/8yP4uppW5pWRi/diDmPNrH4qnxk=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>"
On Success:

· Http Status returned: 200 OK

4.2.2.3 Requesting a test salt file

Call:

· ApiRoot/TestEncryptedSalt (GET)
Authentication:

· Not Required
Action & Notes:
· Returns a salt file which decrypts to the salt phrase of “hello”. This is useful so consumers can test their decryption algorithms
Data required:

· None

Data returned:

· An object of type EncryptedDTO (see appendix)
 On Success:

· Http Status returned: 200 OK

4.2.3 Super user methods:

4.2.3.1 Deleting a user

Call:

· ApiRoot/User (DELETE)
Authentication:

· Required (at super user level)
Action:
· Deletes the user if they have zero salt files

Data required:

· UserId (int)

On Success:

· Http Status returned: 200 OK
On Failure:

· Http Status codes:

· 404 Not Found - If no user found with the specified ID

· 403 Forbidden - if user has salt files belonging to them

· 401 Unauthorized – if the requesting user does not have permission to delete this user
4.2.3.2 Requesting log entries

Call:

· ApiRoot/Log?StartDate={StartDate}&EndDate={EndDate} (GET)
Authentication:

· Required (at super user level)
Action:
· Requests log entries
Data required:

· StartDate, EndDate (DateTimes)

Data returned:

· A list of objects of type LogEntryDTO (see appendix)
On Success:

· Http Status returned: 200 OK

4.2.3.3 Transferring salt ownership

Call:

· ApiRoot/TransferSaltOwnership?EncryptedSaltId={Id}&NewOwnerId={Id} (GET)
Authentication:

· Required (at super user level)
Action:
· Changes the owner of a salt
Data required:

· EncryptedSaltId, NewOwnerId (integers)
Data returned:

· none
On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status codes:

· 404 Not Found – “No user found with the specified ID”

· 404 Not Found – “No salt found with the specified ID”

· 401 Unauthorized – if the requesting user does not have permission to perform this operation.

4.2.4 Salt File management methods:
4.2.4.1 Authentication of these methods

All salt file management methods require the request to have come from an authenticated user. We expect the username and password of the requesting user to be stored in the http headers using Basic authentication.
4.2.4.2 Creating an encrypted salt

Call:

· ApiRoot/Salt (POST)
Authentication:

· Required
Action:
· Creates an encrypted salt
Data required:

· Object of type SaltCreationDTO (see Appendix A)

On Success:

· Http Status returned: 201 Created

· Http Response header set: Location: “http://openp.api.dev/api/Salt/{newId}

On Failure:

· Http Status codes: 401 if user is unauthorized
4.2.4.3 Getting an encrypted salt

Call:

· ApiRoot/Salt {encryptedSaltId} (GET)
Authentication:

· Required
Action & Notes:
· Gets an encrypted salt (as long as the requestor has permission to see it)
Data required:

· encryptedSaltId
Data returned:

· An object of type EncryptedSaltDTO (see appendix)
 On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status codes:

· 404 Not Found - If no salt found with the specified ID

· 401 if user is unauthorized

4.2.4.4 Deleting an encrypted salt

Call:

· ApiRoot/Salt {encryptedSaltId} (DELETE)
Authentication:

· Required
Action:
· Deletes the salt
Data required:

· encryptedSaltId
On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status codes:

· 404 Not Found - If no salt found with the specified ID or if the requesting user does not own a salt with that ID

4.2.4.5 Sharing salt

Call:

· ApiRoot/ShareSalt (POST)
Authentication:

· Required
Action:
· Shares the specified salt file.

· Users can only share salt files that they own.
Data required:

· ShareSaltDto (See Appendix)

On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status codes (Reason Phrases are also set giving more information):

· 404 Not Found - If no salt is specified in the ShareSaltDto

· 404 Not Found - If no salt is found matching the Id sent

· 401 if user is unauthorized

4.2.4.6 Un-sharing salt

Call:

· ApiRoot/ShareSalt (DELETE)
Authentication:

· Required
Action:
· Removes the shared status of a salt

· Users can only un-share keys they own.
Data required:

· ShareSaltDto (See Appendix)

On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status codes (Reason Phrases are also set giving more information):

· 404 Not Found - If no shared salt is found matching the user specified

· 404 Not Found - If no salt is found matching the EncryptedSaltId sent

· 401 if user is unauthorized

4.2.4.7 Listing owned salts

Call:

· ApiRoot/Salt (GET)
Authentication:

· Required
Data required:

· None

Data returned:

· A list of “Encrypted Salt Files” (see appendix) owned by the calling user
On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status returned: 401 if user is unauthorized

4.2.4.8 Listing shared salts

(Salts that are shared with a user)
Call:

· ApiRoot/ShareSalt (GET)
Authentication:

· Required
Data required:

· None

Data returned:

· A list of “Encrypted Salt Files” (see appendix) shared with the calling user

On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status returned: 401 if user is unauthorized

4.2.4.9 Listing salt shares

(Users that have access to a salt via shares)
Call:

· ApiRoot/SaltShares {encryptedSaltId}(GET)
Authentication:

· Required
Data required:

· encryptedSaltId. This salt must belong to the authenticated user.

Data returned:

· A list of “UserDTOs” (see appendix) that the specified salt is shared with

On Success:

· Http Status returned: 200 OK

On Failure:

· Http Status returned: 401 if user is unauthorized

5 Appendix A – Data transfer to and from the methods
All methods can work with wither XML JSON encoded data.
5.1 UserCreationDTO
Used when calling the user creation endpoint /Api/User (POST)
5.1.1 Class
class UserCreationDTO

{

int Id

string UserName

string DisplayName

string Password

string Email

string Notes
}
5.2 SaltCreationDTO
An object with the data required to create an Encrypted Salt

Please note that the “Seed” value is used as the first part of a 128 character long string. The rest of the 128 characters are created randomly. Therefore the only way to produce deterministic salt is to use a seed that is exactly 128 characters in length.

5.2.1 Class:

class SaltCreationDTO
{

string FileName

string Seed

string Comments

int OwnerUserId

}
5.2.2 JSON Example:

{

 "FileName" : "My first salt",

 "Seed" : "IamusingSomeCharactersToSeedTheSalt",

 "Comments" : "An example salt for the documentation",

 "OwnerUserId" : 567
}

5.3 Response Type: Salt Sharing Dto

Used to pass salt sharing details

5.3.1 Class:

class ShareSaltDTO
{

int EncryptedSaltId

int UserId

}
5.4 Response Type: “Log entries”
5.4.1 Class:
class LogEntryDTO
{

DateTime EventTime

string EventDetail

int? UserId

}
5.5 Response Type: “List of users”

5.5.1 Class:

class UserDTO
{

int Id

string DisplayName

string Notes

}
5.6 Response Type: “Public Key”

Data required to create the public key needed to decrypt the encrypted salt files.
5.6.1 Example in XML format:

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">

<RSAKeyValue><Modulus>kcVhdr4DaGLAE2BUEPQSYTJ8JRw9NGsms45r2CEYKcElP4BUGEQnN9R4A8CMM1YZCqu5VbXvPoLZ9i/G8AL6g5YuD7MRTI60Xf930yHjCRNX2NiYX/FrKZrA6+T/GHoh9LjuZXBX75kwj53/8yP4uppW5pWRi/diDmPNrH4qnxk=</Modulus><Exponent>AQAB</Exponent></RSAKeyValue>

</string>
5.7 Response Type: “Encrypted Salt File”

A single encrypted salt file.
5.7.1 Class:

class EncryptedSaltDTO
 {

int Id

string FileName

byte[] SaltBLOB

DateTime CreatedAt

DateTime DeletedAt

string Comments

int OwnerUserId

 }
5.7.2 JSON Example:

{

 "Comments" : "This is the test file from an OpenP KeyServer. The contents should decrypt to 'hello'",

 "CreatedAt" : "2014-01-21T15:34:52.8119981+00:00",

 "DeletedAt" : "0001-01-01T00:00:00",

 "FileName" : "OpenP Test File",

 "Id" : 0,

 "OwnerUserId" : 0,

 "SaltBLOB" : "LuAHhMd7DCbjZDKrY+xs5Nu0cA7c2hqQklCh3RmsZXs9o0wvTSgQaNqcNzyGzdrUX2lcGRcQw0I9qZqinjwcIYcv5bN+k591F58JvNgVJcvQj3NOl50625XGfSchPe1LgKutuBRW7zztVYa6DC7k7GtBbSWO63KXWq34nIPCVgw="

}

5.7.3 Notes:
The field SaltBLOB is the UFT8 representation of the salt phrase after it has been encrypted with the server’s private key.
Page 26
OpenPseudonymiser documentation by Julia Hippisley-Cox, University of Nottingham is licensed under a
Creative Commons Attribution-NoDerivs 2.0 UK: England & Wales License.
OpenPseudonymiser documentation by Julia Hippisley-Cox, University of Nottingham is licensed under a
Creative Commons Attribution-NoDerivs 2.0 UK: England & Wales License.

Page 25

